ECE 561 - Automatic Control Systems
Old Dominion University
Department of Electrical & Computer Engineering

COURSE INFORMATION
Fall 2013

Instructor: Oscar R. González
Kaufman Hall Rm. 231-H
Phone: 757-683-4966, ECE Department: 757-683-3741
Fax: 757-683-3220
e-mail: gonzalez@ece.odu.edu

Office Hours: MW 1:30 PM – 2:30 PM, by appointment, and via Piazza. Questions posted in
Piazza will be answered. Private questions to instructors can be posted in Piazza. Questions sent via e-mail will get a low priority before they are read.

Lectures: MW 3:00 PM - 4:15 PM
Building: Kaufman 213

Blackboard: Log in to ODU’s ECE 461/561 Bb web site, using your ODU’s e-mail username
and password for course materials and grades.

Piazza: Bulletin board for all ECE 461/561 public and private questions.

Teaching Assistant: Marco Gamarra, Kaufman 233, mgama002@odu.edu
Office Hours: MW 12:30 PM – 1:30 PM

Textbook: Control Systems Engineering. Norman S. Nise, John Wiley & Sons,

Software: Matlab ® with Control Systems Toolbox and Simulink

Prerequisites: To begin this course you should have taken ECE 202 or equivalent and should
be proficient in the following areas:

1. Laplace transform operations.
2. Solution of linear ordinary differential equations.
3. Matrix algebra operations.
4. Circuit theory and derivation of transfer functions.
5. Sketching and interpreting Bode plots.

Grading Policy: The final course grades will be determined from the students’ performance on
the examinations, course project, and problem sets, according to the percentages
listed below. Students registering for ECE 561 are expected to turn in higher
quality work, and will receive a different version from ECE 461 of the course
project, the examinations, and additional homework problems. The course
project for ECE 561 requires more independent investigation and laboratory
work than the ECE 461 project.

Problem Sets 10%
Course Project 20%
Exam 1 15% Wednesday, September 25, 2013
Exam 2 15% Wednesday, October 30, 2013
Exam 3 15% Wednesday, November 20, 2013
Final Exam 25% Friday, December 13, 2013 3:45 p.m. – 6:45 p.m.
Course Objectives:

To develop an understanding and practice in the analysis and design of linear time-invariant continuous-time control systems using frequency and time-domain techniques. Computer-aided simulation, analysis, and design techniques will be used extensively.

1. **Modeling in the Frequency Domain.** Review the representation of electrical circuits using transfer function models. Understand the limitations of mathematical models.

2. **Modeling in the Time Domain.** Derive differential equation and state-space models of systems. Derive linearized models of nonlinear electro-mechanical systems.

3. **Reduction of Interconnected Systems.** Perform operations on an interconnection of systems represented by block diagrams using graphical and/or algebraic techniques. Relate signal flow graphs to block diagrams. Determine input/output transfer functions of interconnected systems represented by block diagrams using Mason’s rule. Determine a state-space representation of an interconnection of systems.

4. **Time Domain Analysis.** Determine time response characteristics from the locations of the poles and zeros. Qualitatively and quantitatively analyze first and second order systems. Approximate higher order systems by a dominant first or second order subsystem, if possible. Understand the effect of additional poles and zeros.

5. **Stability.** Analyze Bounded-Input, Bounded-Output (BIBO) and asymptotic stability of open and closed-loop systems. Analyze BIBO stability using the Routh-Hurwitz Criterion.

6. **Steady-state Performance – Analysis and Design.**
 - **Analysis:** Learn the definition and learn to calculate the steady-state error of a system. Derive and use general relations to compute the steady-state error of a unity feedback system. Define and learn to use the system type and static error constants. Derive and learn to use efficient relations to compute steady-state errors for unity feedback systems. Learn to calculate the steady-state error for a non-unity feedback system.
 - **Design:** Determine the range of values of the design parameters that meet the steady-state error specification.

8. **Root Locus Design.** Learn and use the control system design guidelines. Use root locus to design cascade PD and lead compensators to stabilize the closed-loop system and to improve transient response. Use root locus to design cascade PI and lag compensators to improve the steady-state response. Use root locus to design cascade PID and lead-lag compensators.

9. **Frequency Domain Analysis and Design.** Analyze open and closed-loop systems using frequency response techniques. Sketch the Nyquist frequency response plot. Use the Nyquist plot in stability analysis. Learn to calculate and interpret classical gain and phase robust stability margins. Determine desirable Bode plot magnitude shapes for control. Learn to design controllers that meet both time and frequency domain specifications.

10. **State Space Design.** Perform pole placement design using linear state variable feedback controllers with full state feedback and with estimated states.
Honor System:

The Honor System at Old Dominion University is based on individual integrity. In registering for ECE 461/561, you have agreed to adhere to the following Honor Pledge.

"I pledge to support the Honor System at Old Dominion University. I will refrain from any form of academic dishonesty or deception, such as cheating or plagiarism. I am aware that as a member of the academic community it is my responsibility to turn in all suspected violators of the Honor Code. I will report to an Honor Council hearing if summoned."

You must follow the Honor System principles in all the work you turn in, that is, the work you turn in must be yours. It is permitted to work together the problem set solutions, but you must turn in your own work. Experience in problem solving can only be gained by attempting most problems completely on your own. This experience is the best preparation for the course examinations and for future engineering problem solving. However, it is useful to seek help after an honest attempt has been made. Come prepared with your questions to the office hours or post questions in Piazza. Everyone is encouraged to actively participate in Piazza. Acknowledge the people that helped you. Absolutely no collaboration is allowed in any other assessed work other than problem sets.

Course Policies:

1. Late problem sets will not be graded. Two problem set grades will be dropped. It is encouraged that students work together. Since not all the homework problems are graded, you are responsible to verify that your answers are correct by comparing them to the posted solutions. Some assignments and the project may require work in the Signals & Systems workbench in the Systems Research Laboratory (KH Rm. 233).

2. Examinations must be taken at the scheduled times. Only valid excuses such as illness requiring a physician's care, death in the family, or court appearance will be accepted. Always notify me or the ECE department secretary at 683-3741 before the exam.

3. All parts of the course project, must be completed in order to pass this course.

4. Blackboard will be the primary online resource to make available course handouts such as homework assignments, solutions, and course project. Every posting of new material is referenced with an announcement.

5. Piazza is the primary communications tool for public and private postings related to any course topic and questions. Everyone is encouraged to post and reply or edit other people’s postings. Credit will be assigned for active and pertinent participation.

6. The use of Matlab, a computer-aided control system design package (CACSD) is required. It will be used in problem sets and in the project. The examinations and final may include data and plots generated by MATLAB. MATLAB will be used to analyze, design, and simulate control systems. You will not be tested on the syntax of MATLAB commands, but you need to know how to use it, since you will get to use MATLAB during some of the examinations and final exam. A full version of MATLAB, including SIMULINK and the Signal and Control Toolboxes is available in KH Rms. 228-229-230. It is also available online for remote access (instructions are posted in Bb). A student version that includes the professional copy of Matlab, Simulink, and several toolboxes can be purchased from: http://www.mathworks.com/products/studentversion/

7. Reasonable accommodations are provided for students with disabilities. Students should present a letter from Disability Services as soon as possible.
Course Policies: (continued)

8. Matlab’s online pdf manuals and html help files are the best resource of information. In addition, the textbook’s Appendices B, C, E, and F introduce Matlab and provide many examples. More examples will be introduced in the course, and in the solutions to assigned problems.

9. Opportunities to earn bonus points will be announced throughout the semester.

Academic Expectations:

1. Regular attendance is essential.
2. Reading assignments must be completed prior to lectures.
3. Seek help if any topic in the lectures or reading assignment or graded work is not completely understood.

Outline and Reading Assignments:

<table>
<thead>
<tr>
<th>Module</th>
<th>Reading Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>Appendices B.1, C.1, and C.2</td>
</tr>
<tr>
<td>II. Modeling in the Frequency Domain</td>
<td>Chapter 2, Sections 2.1-2.4</td>
</tr>
<tr>
<td>II. Modeling in the Frequency Domain</td>
<td>Appendix B.2-Chapter 2</td>
</tr>
<tr>
<td>III. Modeling in the Time Domain</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>III. Modeling in the Time Domain</td>
<td>Appendix B.2-Chapter 3</td>
</tr>
<tr>
<td>IV. Operations with Interconnected Systems</td>
<td>Chapter 5, Section 5.2, 5.4 - 5.5</td>
</tr>
<tr>
<td>IV. Operations with Interconnected Systems</td>
<td>Appendix B.2-Chapter 5 (Skip Solution via Append & Connect Commands)</td>
</tr>
<tr>
<td>V. Time Domain Analysis</td>
<td>Study Sections 4.1 - 4.8</td>
</tr>
<tr>
<td>V. Time Domain Analysis</td>
<td>Appendix B.2-Chapter 4, Appendices E.1 – E.4</td>
</tr>
<tr>
<td>VI. Stability</td>
<td>Study Sections 6.1 - 6.2</td>
</tr>
<tr>
<td>VI. Stability</td>
<td>Appendix B.2-Chapter 6</td>
</tr>
<tr>
<td>VII. Steady State Errors</td>
<td>Chapter 7, Sections 7.1 - 7.6</td>
</tr>
<tr>
<td>VII. Steady State Errors</td>
<td>Appendix B.2-Chapter 7</td>
</tr>
<tr>
<td>IX. Root Locus Analysis</td>
<td>Chapter 8, Sections 8.1 - 8.4, 8.7 - 8.9</td>
</tr>
<tr>
<td>IX. Root Locus Analysis</td>
<td>Appendix B.2-Chapter 8, Appendices E.5-E.8</td>
</tr>
<tr>
<td>X. Root Locus Design</td>
<td>Chapter 9, Sections 9.1-9.4</td>
</tr>
<tr>
<td>X. Root Locus Design</td>
<td>Appendix B.2-Chapter 9</td>
</tr>
<tr>
<td>XI. Frequency Response Analysis and Design</td>
<td>Chapter 10, Sections 10.1-10-11 & 10.13,</td>
</tr>
<tr>
<td>XI. Frequency Response Analysis and Design</td>
<td>Chapter 11, Appendix B.2-Chapters 10-11</td>
</tr>
<tr>
<td>X State Space Design</td>
<td>Chapter 12</td>
</tr>
<tr>
<td>X State Space Design</td>
<td>Appendix B.2-Chapter 12</td>
</tr>
</tbody>
</table>