RESOLVING TROPHIC STRUCTURE IS ESSENTIAL FOR UNDERSTANDING FOOD WEB RELATIONSHIPS AND ENERGY FLOWS IN THE OCEANS AND THEIR SENSITIVITIES TO NATURAL VARIABILITY AND CLIMATE CHANGE. THE PROBLEM IS THAT MARINE MICROBIAL ECOSYSTEMS (COUNTING FROM THE BOTTOM UP) AND FISHERIES-BASED RESEARCH (COUNTING FROM THE TOP DOWN) GIVE DRAMATICALLY DIFFERENT ESTIMATES OF THE LIKELY NUMBER OF STEPS IN OCEAN FOODwebs. ONE MAJOR DISCREPANCY IS THE STEPS ASSOCIATED WITH PROTISTAN MICROZooplankton (Protozoan Consumers), Which Have Well-Demonstrated Importance In Experimental Studies And Constrained Global Ocean Budgets But Are Virtually Ignored In Fisheries Trophic Research. Compound Specific Isotopic Analysis Of Amino Acids (CSIA-AA), A Recently Developed Technique Based On The Differential $\delta^{15}N$ Enrichment, Some Promise For Bringing These Divergent Perspectives Together, But It Is Not Without Its Own Thorny Issues. Using Tuna As An Example, I Will Illustrate How CSIA-AA Can Be Used To Best Advantage In Combination With Fish Dietary Techniques To Constrain The Mean Trophic Positions Of High-Level Consumers In Marine Systems.