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ABSTRACT

A COVARIANT DESCRIPTION OF THE DEUTERON AND A
BUNCH OF OTHER STUFF

A. Student
Old Dominion University, 2014

Director: Dr. John Doe

An introduction to the use of Bethe-Salpeter and quasipotential equations in the

description of electron scattering from the deuteron is provided. The basic formalism

and many technical issues are introduced in the context of a simple scalar theory.

Results for bound-state wave functions and scattering phases shifts for a variety

of quasipotential prescriptions are presented and qualitative characteristics of these

solutions are discussed. The elastic form factors for the bound state in this model are

calculated using the spectator or Gross equation. The calculations are then extended

to account for the complexities associated with nucleon spin and results are presented

for the elastic structure functions of the deuteron using the spectator equation. This

calculation is shown to produce a good description of elastic electron scattering from

the deuteron over the range of momentum transfers for which data are available.
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CHAPTER 1

INTRODUCTION

With the advent of CEBAF, it will become routine to probe nuclear systems with

electron scattering where the energy and momentum transfers will be well in excess of

the nucleon mass. Under such circumstances, the usual nonrelativistic description of

the nucleus is no longer reliable. It is, therefore, necessary to develop relativistically

covariant models of the nuclear system. This is a difficult task and most work has

been concentrated on the two-nucleon system, although extensions to three-body

systems are being studied.

There are basically three approaches to the construction of covariant models of

the deuteron: relativistic Hamiltonian dynamics [1, 2], Bethe-Salpeter [3, 4, 5, 6] and

related quasipotential equations [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],

and light-cone field theory [22, 23]. The first of these concentrates on the application

of Poincare invariance to Hamiltonian theories with potential-like interactions. The

Bethe-Salpeter and light-cone field theories are derived from field theory, although

actual applications to two-nucleon systems require the introduction of phenomenolog-

ical elements. The Bethe-Salpeter equation and the related quasipotential equations

are based on Feynman perturbation theory and, as such, maintain manifest Lorentz

invariance. The light-cone field theory approach is based on the evolution of field

theories quantized along the light-cone. Both the Hamiltonian dynamics and the

light-cone field-theory focus on the “time” evolution of interacting systems and are

organized such that the calculations are covariant but not necessarily manifestly

covariant.

This paper focuses on the application on Bethe-Salpeter and quasipotential ap-

proaches to the modeling of the deuteron. The actual calculation of these models can

become quite complex due to the spin degrees of freedom of mesons and nucleons.

For this reason, it is instructive to first consider these equations in the context of a

simple model containing only scalar particles. The basic structure of these equations

is easily described and the calculation of bound states and scattering amplitudes is

considerably less formidable. This allows the solutions to be examined for a variety of

quasipotential equations. Some interesting qualitative features of these calculations
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can be identified that will carry over into more realistic models. In particular, it is

shown that the scattering phase shifts seem to be relatively insensitive to the choice

of quasipotential equation provided that the model parameters are appropriately ad-

justed to obtain a bound state at a fixed mass. The spectator or Gross equation

is chosen to demonstrate the problems associated with the calculation of electro-

magnetic current matrix elements in quasipotential models. This model is used to

calculate the elastic electron scattering form factor for the scalar “deuteron” and

the effects of variation of nucleon cutoffs and approximations to the single-nucleon

current operator are studied.

The basic concepts introduced in the context of the scalar model are extended to

cover more realistic models of two spin-1
2

nucleons interacting through the exchange

of mesons with a variety of masses, spins and isospins. Some of the additional com-

plications arising from these additional internal quantum numbers are introduced.

Two interaction models are discussed and applied to the calculation of the structure

functions for elastic electron scattering from the deuteron. The calculations are in

good agreement with the data available for these structure functions.
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CHAPTER 2

RELATIVISTIC WAVE EQUATIONS AND A LOT OF

OTHER STUFF

2.1 THE BETHE-SALPETER EQUATION

It is useful to introduce a simple model for the introduction of the ideas and

formalism of the Bethe-Salpeter equation. For this purpose, consider a simple field

theory of two heavy scalar particles interacting by the exchange of a light scalar

particle. This model allows consideration of the basic structure of the Bethe-Salpeter

equation without dealing with the complication of spin and the exchange of multiple

mesons as is necessary in a realistic model of the deuteron. The equations resulting

from this simple analysis will be extended to include these complications in Section

VI.

The Bethe-Salpeter equation [3] for a two-body system can be derived from quan-

tum field theory and a rigorous derivation is outlined in Refs. [24, 25]. Here, simple

arguments are used to suggest the form and content of the Bethe-Salpeter equa-

tion. First, consider all of the Feynman diagrams that contribute for the scattering

of two heavy scalars, which can be thought of as scalar nucleons, by the exchange

of a light scalar meson as represented in Fig. 1. The solid lines represent prop-

agators for the scalar nucleons and the dashed lines represent propagators for the

scalar mesons. These diagrams are intended to represent skeleton diagrams where

all diagrams which represent dressings of propagators or three point vertices are

subsumed into the propagators or vertices. Diagrams (1b) and (1d) are double and

triple iterations of diagram (1a). Diagrams (1e) and (1f) are diagram (1c) preceded

and followed by diagram (1a). This suggests a scheme for summing all of the con-

tributions to the scattering matrix. This is done by introducing the concept of a

two-particle irreducible diagram. A diagram which can not be separated into two or

more diagrams by cutting just two nucleon propagators is said to be irreducible. By

this definition, the diagrams (1b), (1d), (1e) and (1f) are reducible since they can

be cut into two or more simple diagrams as illustrated by the dotted lines in Fig.
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FIG. 1: Feynman diagrams representing the scattering of two heavy scalar nucleons
(solid lines) by the exchange of a light scalar mesons (dashed lines. Dotted lines show
two-nucleon cuts for reducing the diagrams.

1. The remaining diagrams, (1a), (1c), (1g), (1h) and (1i) are irreducible since any

cut across the diagrams will cut at least one meson propagator as well as the two

nucleon propagators.

If the Bethe-Salpeter interaction kernel V is defined to be the sum of all two-

particle irreducible diagrams as represented by the diagrams in Fig. 2, the sum of all

possible contributions to theM matrix can be represented diagramatically by Fig. 3.

This equation treats the nucleon degrees of freedom explicitly while all of the meson

degrees of freedom are contained in the interaction kernel. Standard Feynman rules

can be used to obtain an integral equation for theM matrix. This can be represented

as

M(p′, p;P ) = V (p′, p;P )−
∫ d4k

(2π)4
V (p′, k;P )G0(k;P )M(k, p;P ), (1)

or equivalently,

M(p′, p;P ) = V (p′, p;P )−
∫ d4k

(2π)4
M(p′, k;P )G0(k;P )V (k, p, ;P ), (2)

where P is the total four-momentum of the nucleon pair, and p′, k and p are the final,

intermediate and initial relative four-momenta of the nucleon pair. The two-nucleon
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FIG. 2: Feynman diagrams representing the two-nucleon irreducible kernel.

FIG. 3: Feynman diagramatical representation of the Bethe-Salpeter equation for
the M matrix.
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intermediate propagator is defined as

G0(k;P ) = −i∆(1)
F (

P

2
+ k,m)∆

(2)
F (

P

2
− k,m), (3)

where

∆
(i)
F (p,m) =

1

p2 −m2 + iη
(4)

is the propagator for particle i with mass m. Note only the pole part of the dressed

single-particle progagator is retained, as is conventional in such models. The con-

tributions from the residual part of the propagator can be included in a variety of

ways, but this complication is ignored here.

The equations for the conjugate of the M matrix

M†(p′, p;P ) = V †(p′, p;P )−
∫ d4k

(2π)4
M†(p′, k;P )G†0(k;P )V †(k, p, ;P ), (5)

and

M†(p′, p;P ) = V †(p′, p;P )−
∫ d4k

(2π)4
V †(p′, k;P )G†0(k;P )M†(k, p;P ), (6)

can be used to derive the unitarity relation for the M matrix

M(p′, p, ;P ) − M†(p′, p;P ) =∫ d4k′

(2π)4

∫ d4k

(2π)4

(
(2π)4δ4(p′ − k′)−M†(p′, k′;P )G†0(k

′;P )
)

×
(
V (k′, k;P )− V †(k′, k;P )

)
×
(
(2π)4δ4(k − p)−G0(k;P )M(k, p;P )

)
−
∫ d4k

(2π)4
M†(p′, k;P )

(
G0(k;P )−G†0(k;P )

)
M(k, p;P ). (7)

The discontinuity in theM matrix, which in this simple case is simply the imaginary

part of the amplitude, arises from two contributions, one involving the discontinuity

of the two-nucleon free propagator and the other involving the discontinuity of the

kernel. The discontinuity of the free two-nucleon propagator is proportional to the

product of two delta functions placing both of the nucleons on their mass shells. This

can occur only when the P 2 ≥ (2m)2. If the invariant mass of the pair W is defined

such that P 2 = W 2, then this can occur only when W ≥ 2m or W ≤ −2m. Since

the discontinuity of the free propagator occurs within a four-momentum loop, this

produces branch cuts beginning at the two thresholds in W . These are the positive

and negative energy elastic cuts. The discontinuity of the kernel is associated with
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FIG. 4: The analytic structure of the M matrix as a function of complex W . The
heavy lines represent branch cuts and crosses represent bound state poles.

both nucleons and at least one meson being on mass shell and contributes a set of

overlapping cuts with thresholds at W = ±(2m + nµ), where µ is the meson mass

and n > 0 is an integer. The analytic structure of the M matrix as a function of

complex W is shown in Fig. 4. Another possibility, that is obscured by writing the

unitarity relation as in (7), is that the M matrix can have poles corresponding to

the presence of bound states. For the purpose of discussion, assume that there is

only one bound state for P 2 = P 2
d = M2

d < 4m2, where Md is the mass of the scalar

“deuteron.” Thus, poles are expected inM at W = ±Md and are illustrated in Fig.

4 by crosses.

The M matrix can now be represented as

M(p′, p, ;P ) =
Γ(p′;Pd)Γ

†(p;Pd)

P 2 −M2
d + iη

+R(p′, p, ;P ), (8)

where R(p′, p, ;P ) represents the remainder of the M matrix once the pole is re-

moved. Substituting (8) into (1) gives

Γ(p′;Pd)Γ
†(p;Pd)

P 2 −M2
d + iη

+R(p′, p, ;P ) = V (p′, p;P )

−
∫ d4k

(2π)4
V (p′, k;P )G0(k;P )

(
Γ(k;Pd)Γ

†(p;Pd)

P 2 −M2
d + iη

+R(k, p, ;P )

)
. (9)

Since V , G0 and R are analytic at the bound state poles, comparing the residue of

the pole on each side of the equation yields

Γ(p′;Pd) = −
∫ d4k

(2π)4
V (p′, k;Pd)G0(k;Pd)Γ(k;Pd). (10)
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Γ(p′;Pd) is the Bethe-Salpeter bound state vertex function. The normalization of

the bound state is obtained by first using (1) and (2) to obtain the nonlinear form

of the Bethe-Salpeter equation

M(p′, p, ;P ) = V (p′, p;P )−
∫ d4k

(2π)4
M(p′, k;P )G0(k;P )M(k, p, ;P )

−
∫ d4k′

(2π)4

∫ d4k

(2π)4
M(p′, k′;P )G0(k

′;P )V (k′, k;P )G0(k;P )M(k, p, ;P ).

(11)

Substituting (8) into (11) and equating the residues of the poles gives:

1 =
∫ d4k

(2π)4
Γ†(k;Pd)

∂

∂P 2
G0(k;P )

∣∣∣∣∣
Pd

Γ(k;Pd)

−
∫ d4k′

(2π)4

∫ d4k

(2π)4
Γ†(k′;Pd)G0(k

′;Pd)
∂

∂P 2
V (k′, k;P )

∣∣∣∣∣
Pd

G0(k;Pd)Γ(k;Pd),

(12)

where the Bethe-Salpeter vertex equation (10) has been used to simplify the expres-

sion. The Bethe-Salpeter bound state wave function can now be defined as:

ψ(p;Pd) = G0(p;Pd)Γ(p;Pd) (13)

and, using the fact that G0(k
′;Pd) is hermitian, the wave function normalization is

given by:

1 =
∫ d4k

(2π)4
ψ†(k;Pd)G

−1
0 (k;Pd)

∂

∂P 2
G0(k;P )

∣∣∣∣∣
Pd

G−10 (k;Pd)ψ(k;Pd)

−
∫ d4k′

(2π)4

∫ d4k

(2π)4
ψ†(k′;Pd)

∂

∂P 2
V (k′, k;P )

∣∣∣∣∣
Pd

ψ(k;Pd) (14)

Using the definition of the wave function (13), and the equation for the vertex func-

tion (10) a wave equation can be written as

G−10 (p;Pd)ψ(p;Pd) = −
∫ d4k

(2π)4
V (p, k;Pd)ψ(k;Pd) (15)

The basic formalism is now in place for both scattering and normalized bound

states. There are, however, substantial practical difficulties in obtaining such solu-

tions. Although the equations as they are presented are exact, they can not be solved

exactly since the kernel contains an infinite number of contributions. Therefore, it
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is conventional to retain only a limited number of contributions to the kernel in or-

der to obtain a solution. Typically, the kernel is truncated at the level of one- or

two-boson exchange. This truncation constitutes an almost inevitable approximation

and, as will be discussed below, for the scalar model used here, it is not the best

approximation to the full untruncated Bethe-Salpeter equation.

A second problem, that is of a technical nature, is the difficulty of solving the four-

dimensional integral equations. The equations can be reduced to two-dimensional

equations by an expansion of the potentials, scattering matrices and vertex functions

in some suitable set of angular functions. This leaves integrals in the loop energy

and the magnitude of the loop momentum. As is usually the case with performing

such loop integrations, it is convenient to perform a Wick rotation of the energy

variable into the complex plane. Due to the presence of branch cuts associated with

the angular expansion of the kernel, which move as a function of the external relative

energy, the contour must be carefully distorted in performing the Wick rotation. The

two-dimensional integral equations can, and have been solved numerically [4, 5, 6].

2.2 QUASIPOTENTIAL EQUATIONS

An alternate approach, to the construction of relativistic models of two-body

bound and scattering states is the construction of quasipotential equations. This

method can be understood in relation to the Bethe-Salpeter equations presented

above. The common characteristic of all quasipotential equations is the replacement

of the free two-nucleon propagator by a new propagator that includes a delta-function

constraining the relative energy of the intermediate states and thereby reducing the

four-dimensional integral equation to three dimensions. Although it is possible to

express this replacement in completely covariant terms [26], it is most easily described

in the center of momentum frame where the equations are generally actually solved.

By introducing a new propagator of the form

g0(p;P ) =
π

Ep
δ (p0 − x(Ep −W/2)) ĝ0(p;P ), (16)

where Ep =
√
p2 +m2 is the on-mass-shell energy, the multiple scattering series

represented by (1) can be rearranged into a pair of coupled integral equations

M(p′, p;P ) = U(p′, p;P )−
∫ d3k

(2π)32Ek
U(p′, ǩ;P )ĝ0(ǩ;P )M(ǩ, p;P ), (17)
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and

U(p′, p;P ) = V (p′, p;P )−
∫ d4k

(2π)4
V (p′, k;P ) (G0(k;P )− g0(k;P ))U(k, p;P ) (18)

where ǩ represents the intermediate-state relative momentum constrained by the

delta function in (16), and the new kernel in (17), defined by (18), is called the

quasipotential. The equations (17) and (18) are exactly equivalent to (1). Note that

while (17) is a three-dimensional integral equation, the equation for the quasipotential

(18) is still four-dimensional. Matters have only been complicated at this stage by

replacing one four-dimensional integral equation with a three-dimensional plus a

four-dimensional integral equation. In practice, the (18) is not solved exactly, but

is iterated and then truncated at a fixed number of meson exchanges. This reduces

the construction of U to a quadrature over loops containing V . Indeed, in most

cases, both the Bethe-Salpeter and quasipotential equations are solved in one-boson

exchange or ladder approximation. In this approximation U = V .

The quasipotential equation for the vertex function is

Γ(p;Pd) = −
∫ d3k

(2π)32Ek
U(p, ǩ;Pd)ĝ0(ǩ;Pd)Γ(ǩ;Pd) (19)

Note that the vertex function on the right side of (19) depends only upon the con-

strained relative momentum while the vertex function on the left depends upon the

unconstrained momentum. The unconstrained vertex function is, therefore, obtained

in two steps. First the integral equation is solved with only the constrained relative

momentum p̌ appearing on the left of (19). The resulting constrained vertex func-

tion can then be substituted into the right side of (19) and the unconstrained vertex

function obtained by quadrature. A similar approach can be applied to the solution

of (17).

A constrained quasipotential wave function can be defined as

ψ̂(p̌;Pd) ≡ ĝ0(p̌;Pd)Γ(p̌;Pd) (20)

The normalization condition for these wave functions can be obtained in a similar

fashion to that use in obtaining (14) and is

1 =
∫ d3k

(2π)32Ek
ψ̂†(ǩ;Pd)ĝ

−1
0 (ǩ;Pd)

∂

∂P 2
ĝ0(ǩ;P )

∣∣∣∣∣
Pd

ĝ−10 (ǩ;Pd)ψ̂(ǩ;Pd)

−
∫ d3k′

(2π)32Ek′

∫ d3k

(2π)32Ek
ψ̂†(ǩ′;Pd)

∂

∂P 2
U(ǩ′, ǩ;P )

∣∣∣∣∣
Pd

ψ̂(ǩ;Pd) (21)



11

TABLE 1: A selection of quasipotential propagators for scalar nucleons

.

Name x ĝ0(p̌, P )

Blankenbecler-Sugar [7] 0 1

2(E2
p−W2

4
)−iη

Thompson [8] 0 1
W (2Ep−W )−iη

Todorov [9] 0 Ep

W (E2
p−W2

4
)−iη

Gross (spectator) [12] 1 1
W (2Ep−W )−iη

Erkelenz-Holinde [10] 1 1

2(E2
p−W2

4
)−iη

Kadychevsky [11] 1 1
2Ep(2Ep−W )−iη

Gross [13] −1 ≤ x ≤ 1 2Ep

W (2Ep−W )(Ep+
W
2
+x2(Ep−W

2
))

The wave equation for the constrained quasipotential wave function is

ĝ−10 (p̌;Pd)ψ̂(p̌;Pd) = −
∫ d3k

(2π)32Ek
U(p̌, ǩ;P )ψ̂(ǩ;Pd) (22)

Criteria for choosing ĝ0 can be obtained by considering the analytic structure of

the M matrix as shown in Fig. 4. Knowing the analytic structure, it is possible

to construct dispersion relations for the scattering matrix. If the system is lightly

bound, the physical values of W will be close to the elastic cut on the positive energy

real W axis. The contributions to the scattering matrix coming from the positive

energy cuts and poles should then constitute the dominant contributions to the scat-

tering matrix. In order to preserve this property, it is necessary to choose ĝ0 such

that it preserves the position and residues associated with the positive energy elastic

cut. This requirement allows for an infinite variety of choices for ĝ0 and a substan-

tial number of quasipotential propagators have been proposed in the literature. A

representative sample for our scalar model is presented in Table 1.

Before examining the results of calculations performed in the simple scalar model,
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it is useful to compare the Bethe-Salpeter and quasipotential equations. As a prac-

tical matter, both types of equations require that a truncated kernel be used for

calculating scattering amplitudes and bound state wave functions, usually at the

level of the ladder or one-boson-exchange approximation. The question then arises

as to which of these equations provides the best approximation to the complete un-

truncated Bethe-Salpeter equation, which is the exact field-theoretical result. It is

tempting to assume that the ladder approximation to the Bethe-Salpeter equation

is the optimal approximation, in that it appears the most straightforward and least

arbitrary prescription for truncating the equations. There is good reason to believe

that this is not necessarily the case. The simple scalar model that is used here for

pedagogical purposes has received a considerable amount of study. In particular,

Gross [27] has examined this model in considerable detail and has shown that to

all orders in the Feynman diagramatical expansion of the scattering matrix there is

a partial cancellation between iterated ladder-like contributions and contributions

from the crossed boxes. The particular organization of the M matrix equations

associated with the spectator equation places the canceling pieces of the iterated

ladders and the crossed boxes in higher-order contributions to the quasipotential

and therefore improves the convergence of the truncated spectator equation to the

full Bethe-Salpeter equation. This can also be seen in Table VI.1 of Ref. [26] which

compares the coefficients of an expansion in µ/m of the second order contributions to

the scattering matrix for several of the quasipotential equations and the full second

order Bethe-Salpeter result. All of the approaches agree to order (µ/m)−1. All of the

quasipotential approaches agree with the full second-order Bethe-Salpeter to order

(µ/m)0, but the ladder approximation to the Bethe-Salpeter equation disagrees at

this order. Some caution should be used in generalizing these results to systems

involving particles with spin and isospin, in that the operators associated with these

quantities can interfere with the delicate cancellations that occur in the scalar model.

In these more complicated situations, the question of the quality of any particular ap-

proximation is still open. Some additional light can, however, be cast on the practical

implications of this problem by some additional results from the study of the sim-

ple scalar model under conditions which approximate the use of these quasipotential

equations in physical applications.

2.2.1 THIS IS A SUBSECTION
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Four score and seven years ago, our forefathers brought forth on this continent

a new nation conceived in liberty and dedicated to the proposition that all men are

created equal.

2.3 THE SCALAR MODEL

It is useful to now construct a version of the scalar model that has features that

appear in the calculations of the deuteron presented in Section VI. First, in any

phenomenological model of the deuteron that treats the effective degrees of freedom

as nucleons and mesons, information about the finite size of this constituents must

be included as form factors at the interaction vertices. The general form of the

nucleon-nucleon-meson vertex in our scalar model would be

−igF (p′2, p2, `2) (23)

where g is a dimensionful coupling constant, p and p′ are the initial and final nucleon

four-momenta, and ` = p − p′ is the meson four-momentum. F (p′2, p2, `2) is a gen-

eral form factor depending upon the invariant masses of the three virtual particles

connecting to the interaction vertex. For simplicity, assume that the form factor can

be written in a factorable form [14, 15, 28]

F (p′2, p2, `2) = h(p′2)h(p2)f(`2) (24)

where the meson form factor is taken to be

f(`2) =
(Λ2

µ − µ2)2 + Λ4
µ

(Λ2
µ − `2)2 + Λ4

µ

(25)

and the nucleon form factor is

h(p2) =
2(Λ2

n −m2)2

(Λ2
n − p2)2 + (Λ2

n −m2)2
(26)

where Λµ and Λn are meson and nucleon form factor masses. The presence of the

nucleon form factor is an unusual feature of the calculations presented here. This

form factor allows the four-momenta of the nucleons to be controlled such that the

contributions from highly-virtual nucleons can be limited.

Since the model is to be solved for a variety of quasipotential equations, it is

necessary to deal with an additional problem. For all quasipotential propagators for

which x 6= 0, the intermediate state nucleons in (17) are not treated symmetrically.
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This can lead to problems with the Pauli exchange symmetry of the scattering am-

plitudes and vertex functions. It has been shown in Ref. [15] that this problem can

be overcome by requiring that the interaction kernel be symmetrized for bosons or

antisymmetrized for fermions. Therefore, the kernel for the quasipotential equations

should be taken as

V (p′, p;P ) =
1

2
g2h((P/2 + p′)2)h((P/2− p′)2)

×
[
f((p− p′)2)∆F (p− p′, µ) + f((p+ p′)2)∆F (p+ p′, µ)

]
×h((P/2 + p)2)h((P/2− p)2). (27)

for the scalar model, where it is assumed that the exchanged meson carries no charge.

This procedure has the drawback that it can generate spurious singularities in the

calculation of scattering amplitudes and vertex functions. This problem can be dealt

with as shown in Ref. [15].

It is useful to use a procedure in choosing the parameters in the model that

is consistent with the methods used to constrain the model parameters in meson-

nucleon models of the deuteron. Any acceptable model of the deuteron must contain

an interaction that produces the deuteron bound state at the correct binding energy

and that provides a reasonable description of the scattering data up to a few hundred

MeV of laboratory kinetic energy. Since it is intended that this scalar model bear

some resemblance to the deuteron, the scalar nucleon mass is chosen to be m =

938.9 MeV , the meson mass to be µ = 138.0 MeV and the meson form factor mass

is fixed to be Λµ = 2500.0 MeV , which is of the same order as the meson form

factor masses found in the fits to the deuteron and the NN scattering data in Refs.

[14, 15]. For each calculation, the value of the nucleon form factor mass is fixed, but

various values of this parameter are considered in order to examine the sensitivity

of the calculations to this parameter. If the nucleon, meson and form factor masses

are fixed, the only remaining parameter in this simple scalar model is the coupling

constant. The procedure used in producing these calculations for the scalar model is

to adjust the coupling constant for each quasipotential model to produce an S-wave

bound state at a binding energy of 2.3 MeV . This value is then used to calculate

the S- and D-wave phase shifts for the model.

Figure 5 shows the values of the square of the coupling constants for the various

quasipotential models listed in Table I as a function of the quasipotential parameter

x. The crosses are calculated with a nucleon form factor mass Λn = 1600 MeV ,



15

0.0 0.2 0.4 0.6 0.8 1.0
x

16.0

16.5

17.0

17.5

18.0

18.5

19.0

19.5

g2
(G

eV
2 )

n=
n=1600 MeV

Blankenbecler-Sugar
Thompson

Todorov

Blankenbecler-Sugar

Kadychevsky

Erkelenz-Holinde

Gross

Gross

FIG. 5: This figure shows square of the coupling constants for the various quasipo-
tential models listed in Table I. The crosses represent couplings calculated with a
nucloen form factor mass of Λn = 1600 MeV . The asterisks represent couplings
calculated with Λn =∞.

and the asterisks are calculated with Λn = ∞. Values for −1 < x < 1 are for the

family of quasipotential models described in Ref. [13]. Clearly, the coupling constant

depends both on the quasipotential model used and the value of the nucleon cutoff.

However, for a fixed cutoff mass, the variation in the value of g2 is on the order of

a few percent. In these models, the couplings should be viewed as effective coupling

constants.

Figure 6 shows S- and D-wave phase shifts calculated for the various quasipoten-

tial models with Λn = 1600 MeV . The phase shifts for all models are within 0.5

degrees over the range 0 < Tlab < 300 MeV . This implies that there is very little

model dependence once the coupling constants are fixed to give the same binding

energy. This is in contrast with the results shown in Fig. 17 of Ref. [26] where the

coupling constant was fixed arbitrarily and considerable variation was seen in the

phase shifts. Figure 7 shows a comparison of the range of phase shifts calculated

with Λn = 1600 MeV (light shading) with those with Λn =∞ (small cross-hatched

band). The spread in values of the phase shifts with Λn =∞ is still small, however,

a substantial sensitivity to the cutoff mass is apparent. If phase shift data were avail-

able for this model and included in the fit, as is the case with the NN interaction
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FIG. 6: S- and D- wave phase shifts calculated for the various models listed in Table
I with Λn = 1600 MeV .
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FIG. 7: S- and D- wave phase shifts calculated for the various models listed in Table
I comparing results with Λn = 1600 MeV (light shading) to those with Λn = ∞
(dark shading).
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models, the fit would tend to constrain the value of any parameter which tended to

generate substantial variation in the phase shifts.

Figure 8 shows the constrained quasipotential momentum-space wave functions

calculated for the various models listed in Table 1. All of the wave functions give

similar values below about 200 MeV but tend to diverge as the momentum increases.

This is not an unexpected result since the quasipotential propagators are very similar

at low p but will differ increasingly from one another as the momentum increases.

Similarly, the effect of the nucleon cutoff will become more apparent at larger mo-

menta.
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FIG. 8: Constrained quasipotential momentum space wave functions calculated for
the various models listed in Table I. Figure (a) shows the various models with Λn =
1600 MeV , while the Fig. (b) compares this range of results with that with Λn =∞.
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CHAPTER 3

ELECTROMAGNETIC INTERACTIONS

3.1 ELECTROMAGNETIC CURRENT FOR THE

BETHE-SALPETER EQUATION

In order to describe the electromagnetic properties of the deuteron, it is nec-

essary to be able to construct the electromagnetic current matrix elements for the

interacting two-nucleon system. To see how this is done, consider the Feynman di-

agrams describing two-nucleon scattering in Fig. 1. If it is assumed that both the

nucleons and the mesons can carry charge, then it is expected that an external elec-

tromagnetic field should see currents associated with the motion of both nucleons

and mesons. The five-point function describing the interaction of a virtual photon

with the scattering nucleons can then be represented by all Feynman diagrams which

can be obtained by attaching the virtual photon to each of the nucleon and meson

lines in Fig. 1. The diagrams can then be used to identify single-nucleon currents

and two-nucleon irreducible two-body currents. The matrix element associated with

elastic electron scattering from the Bethe-Salpeter two-nucleon bound state can then

be represented by the the Feynman diagrams in Fig. 9. The two-nucleon irreducible

electromagnetic interaction current is represented by the diagrams in Fig. 10. These

two-nucleon currents are usually referred to as meson exchange currents (MEC).

In the simple scalar model, the Feynman rules can be used to represent the three

diagrams in Fig. 9 as

J µ(P ′, P ) = −
∫ d4p′

(2π4)

∫ d4p

(2π4)
ψ†(p′;P ′)

×
{
iJ (1)µ

(
P ′

2
+ p′,

P

2
+ p

)
∆

(2)
F

−1
(
P ′

2
− p′,m

)

×(2π)4δ4
(
P ′

2
− p′ − P

2
+ p

)

+iJ (2)µ

(
P ′

2
− p′, P

2
− p

)
∆

(1)
F

−1
(
P ′

2
+ p′,m

)

×(2π)4δ4
(
P ′

2
+ p′ − P

2
− p

)
+ J (12)µ(p′, P ′; p, P )

}
ψ(p;P ) (28)
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FIG. 9: Feynman diagrams representing the Bethe-Salpeter matrix element for elastic
electron scattering form the two-nucleon bound state

FIG. 10: Feynman diagrams representing the two-nucleon irreducible electromagnetic
interaction current.
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where J (i)µ(p′i, pi) is the single-nucleon current operator for nucleon i and

J (12)µ(p′, P ′; p, P ) is the two-nucleon irreducible current operator.

The single-nucleon current must satisfy the Ward-Takahashi identity [29]

qµJ
(i)µ(p′, p) = ∆−1F (p′,m)−∆−1F (p,m). (29)

Contracting the current matrix element (28) with qµ and using the wave equation

(15), it can be shown that the two-nucleon current operator must satisfy the identity

[28]

qµJ
(12)µ(p′, P ′; p, P ) = V (p′ +

q

2
, p;P ) + V (p′ − q

2
, p;P )

−V (p′, p+
q

2
;P ′)− V (p′, p− q

2
;P ′) (30)

If the model calculations were strictly field theoretical, there would now be no

additional complications, since the usual field theoretical couplings to the nucleon and

meson for the diagrams of Fig. 10 would satisfy (30) provided that the kernel and

the two-nucleon current were truncated at the same number of meson exchanges.

The complication comes from the introduction of form factors at the strong and

electromagnetic vertices to account for the finite sizes of the nucleons and mesons.

For example, it is tempting to simply write the phenomenological electromagnetic

one-body current for the nucleon as the field theoretical bare coupling multiplied by

a form factor to give

J (i)µ(p′, p) = F (Q2)(p′ + p)µ (31)

where Q2 = −q2 = −(p′ − p)2. This does not satisfy the Ward-Takahashi identity,

however. This problem has been studied in Ref. [28] for models containing factorable

vertices such as is defined by (23) and (24). It is shown there that this problem can

be dealt with if the electromagnetic current is taken to be

J (i)µ(p′, p) = a(Q2, p′2, p2)

[
(p′ + p)µ − (p′ + p) · q

q2
qµ
]

+ b(p′2, p2)(p′ + p)µ (32)

where

b(p′2, p2) = f0(p
′2, p2) =

[
h(p2)

h(p′2)
(p′2 −m2)− h(p′2)

h(p2)
(p2 −m2)

]
1

p′2 − p2
(33)

and

a(Q2, p′2, p2) = (F (Q2)− 1)h0(Q
2, p′2, p2) (34)
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FIG. 11: Feynman diagrams representing the elastic current matrix element for the
spectator or Gross equation

where h0 is some function subject to the constraint h0(Q
2,m2,m2) = 1. The choice

h0(Q
2, p′2, p2) = f0(p

′2, p2) is used here for simplicity. A similar procedure must be

followed in general for the electromagnetic current of the meson. For the calculations

presented here, a single-nucleon form factor of the form

F (Q2) =
1(

1 + Q2

0.71GeV 2

)2 (35)

is used.

3.2 ELECTROMAGNETIC CURRENT FOR THE SPECTATOR

EQUATION

Construction of the correct form of the current matrix element for the trun-

cated quasipotential has not been sufficiently studied for the general case. However,

the correct form of the matrix element for the spectator or Gross equation has been

described in Ref. [28], and a description of the matrix element for the Blankenbecler-

Sugar equation is described in a recent paper by Coester and Riska [25]. The specta-

tor equation will be used for the calculations of the electromagnetic current presented

here for the scalar model and for the realistic deuteron calculation.

The motivation for the construction of the current matrix element for the spec-

tator equation can be most easily seen by realizing that the choice of the spectator

equation propagator is equivalent to keeping only the positive energy nucleon pole for
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particle 1 in all loop integrations. Now, consider the diagrams for the Bethe-Salpeter

current matrix element in Fig. 9. For diagram (9a), particle 1 can be placed on its

positive energy mass shell leading to diagram (11a), where the on-shell particle is

represented by a cross. In the case of Fig. 9b, particle 1 can be placed on mass shell

either before or after the interaction with the virtual photon leading to the two dia-

grams (11b) and (11c). Diagram (9c) contains two loops and particle 1 can be placed

on shell in both of them leading to diagram (11c). In this last case, the two-nucleon

current will be the same as the Bethe-Salpeter two-nucleon current only at the level

of one meson exchange. Note that while diagrams (11a) and (11d) require only the

constrained vertex functions, diagrams (11b) and (11c) require both the constrained

and the unconstrained vertex functions.

Prior to Ref. [28], it was assumed that the proper form of the current matrix

element was described by diagram (11a) along with a symmetric diagram where the

photon attaches to particle 1 and particle 2 is placed on mass shell [17]. Because

of the symmetry of the matrix element, the contribution of the second diagram

is equivalent to diagram (11a). Thus this approximation is equivalent to simply

calculating 2×diagram (11a). Since the form of this approximation looks like a

matrix element of a single-nucleon current between spectator wave functions, it is

referred to as the relativistic impulse approximation (RIA). However, it has been

shown that the RIA does not, in general, conserve the electromagnetic current while

the complete matrix element, described by the diagrams of Fig. 11, does [28].

For elastic scattering from the scalar deuteron, Lorentz invariance and current

conservation require that the current matrix element be of the form

J µ(P ′, P ) = G(Q2)(P ′µ + P µ) (36)

where G(Q2) is the elastic form factor with Q2 = −(P ′ − P )2. The form factor is

defined such that G(0) = 1, since at long wave lengths only the total charge of the

scalar deuteron can be measured. The symptom of the lack of current conservation

in the RIA is manifest as GRIA(0) 6= 1.

Figure 12 shows the square of the form factor of the scalar deuteron calculated

using the spectator equation. Fig. 12a shows three calculations of the RIA, one with

f0 = 1 for Λn = 1600 MeV , one with the single-nucleon current as given in (32)

(labeled as f0 6= 1) for Λn = 1600 MeV , and a the third is calculated with Λn =∞.

Note that the use of the off-shell current operator (32) results in a substantial increase
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FIG. 12: The square of the electric form factor of the scalar deuteron. Figure (a)
shows three calculations in the RIA while figure (b) shows similar calculations for
the complete current conserving matrix element.

in the size of the form factor at large momentum transfers, bringing it much closer to

the result with no nucleon cutoff. Figure 12b shows the complete calculation resulting

from the sum of diagrams (11a), (11b) and (11c), where, in this case, diagram (11d)

does not contribute since it is assumed that the meson carries no charge. Three

calculations are presented which correspond to those of Fig. 12a. The basic trends

are as in the RIA. However, it is clear that calculation of the complete conserved

current can result in a substantial modification of the form factor at larger momentum

transfers from that obtained in the RIA.
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CHAPTER 4

MODEL OF THE PHYSICAL DEUTERON

All of the basic conceptual machinery is now in place to extend the simple scalar

model calculations to the more realistic case of spin-1
2
, isospin-1

2
nucleons interact-

ing through the exchange of a variety of mesons with various masses, spins, parities

and isospins. All quantities can be calculated just as in the scalar case, but the

calculations are complicated considerably by the necessity of dealing with relativistic

particles with spin. The spin-1
2

nucleons are now defined by propagators which are

four-dimensional matrices in the Dirac-spinor space and couplings of mesons to the

nucleons are in general represented by operators in the Dirac-space and operators

in the isospin space of the nucleons. Therefore, many of the quantities which are

simply represented by numbers in the scalar model will be matrices or tensors in the

realistic model. While tedious, these complications can be dealt with in relatively

straight forward ways by constructing coupled integral equations projected onto suit-

able subspaces. It is useful to examine some of the quantities which contribute to the

realistic calculation in order to understand how to extend the previous discussion to

cover the more realistic model.

The Bethe-Salpeter vertex function for the spin-1 deuteron can be written as

(Γ(p, P ) · ξλd(P )C)ab (37)

where ξλd(P ) is the polarization four-vector for the deuteron, C is the Dirac charge

conjugation matrix , the subscripts a and b are indices in the Dirac spinor space, and

Γµ can be determined by basic symmetry arguments to have the general form:

Γµ(p, P ) = f1(p
2, p · P )γµ + g1(p

2, p · P )
pµ

m

+
6p2 −m
m

(
f2(p

2, p · P )γµ + g2(p
2, p · P )

pµ

m

)
+
(
f2(p

2,−p · P )γµ + g2(p
2,−p · P )

pµ

m

) 6p1 +m

m

+
6p2 −m
m

(
f4(p

2, p · P )γµ + g4(p
2, p · P )

pµ

m

) 6p1 +m

m
(38)
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where p1 = P
2

+ p and p2 = P
2
− p. This satisfies the generalized Pauli symmetry

requiring that

Γµ(p, P ) = −CΓµT (−p, P )C−1. (39)

Note that for given values of p and P , the vertex function depends upon eight scalar

functions, two pairs of which are related by inversion of p. In the case of the con-

strained spectator vertex function where particle 1 is on its positive energy mass

shell, only four of these functions contribute. Therefore, the general Bethe-Salpeter

vertex and wave functions can be represented by eight radial wave functions while

the spectator constrained vertices and wave functions have only four radial wave

functions.

The single-nucleon current operator to be used with factorable interaction vertices

is given by [28]:

J (i)µ(p′, p) = F1(Q
2)f0(p

′2, p2) γµ +
F2(Q

2)

2m
h0(p

′2, p2) iσµνqν

+F3(Q
2)g0(p

′2, p2)
6p′ −m

2m
γµ
6p−m

2m
(40)

where

f0(p
′2, p2) ≡ h(p2)

h(p′2)

m2 − p′2

p2 − p′2
+
h(p′2)

h(p2)

m2 − p2

p′2 − p2
, (41)

g0(p
′2, p2) ≡

(
h(p2)

h(p′2)
− h(p′2)

h(p2)

)
4m2

p′2 − p2
(42)

and h0(p
′2, p2) is an arbitrary function subject only to the constraint that

h0(m
2,m2) = 1. In the calculations presented here, this function is chosen to be

h0(p
′2, p2) = f0(p

′2, p2), for simplicity.

By invoking Lorentz invariance, current conservation and parity, the general form

of the elastic electromagnetic current matrix element for elastic electron scattering

from the deuteron can be shown to have the general form [17]:

J µ
λ′
d
λd

(P ′, P ) = −
{
G1(Q

2)(ξ∗λ′
d
(P ′) · ξλd(P ))(P ′ + P )µ

+ G2(Q
2)
[
ξµλd(P )(ξ∗λ′

d
(P ′) · q)− ξµ∗λ′

d
(P ′)(ξλd(P ) · q)

]
− G3(Q

2)
1

2M2
d

(ξ∗λ′
d
(P ′) · q)(ξλd(P ) · q)(P ′ + P )µ

}
(43)

The Gi’s are related to the charge, magnetic and quadrupole form factors by:

GC = G1 +
2

3
ηGQ

GM = G2

GQ = G1 −G2 + (1 + η)G3 (44)
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TABLE 2: This is a spurious table.

U T10 T20 Im T11 ReT11 ImT21 ReT21 ImT22 ReT22
U I I I II II II II I I
Pn I I I II II II II I I
Ps II II II I I I I II II
Pl II II II I I I I II II

where

η =
Q2

4M2
d

(45)

The cross section for elastic electron-deuteron scattering is:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

1

1 + 2E
Md

sin2(θ/2)

[
A(Q2) +B(Q2) tan2 θ

2

]
(46)

where the structure functions A(Q2) and B(Q2) can be defined in terms of the form

factors GC , GM and GQ as:

A(Q2) ≡ G2
C(Q2) +

Q2

6M2
d

G2
M(Q2) +

Q4

18M4
d

G2
Q(Q2)

B(Q2) ≡ Q2

3M2
d

(
1 +

Q2

4M2
d

)
G2
M(Q2)

The charge and quadrupole form factors can be separated by measuring the tensor

polarization T20 in a polarization experiment. This is defined as:

T20(Q
2) = −

√
2Q2

3M2
d

GCGQ + (Q2/12M2
d )G2

Q

G2
C + (Q4/18M4

d )G2
Q

(47)

and is sometimes denoted as t̃20.

Reference [15] describes in considerable detail the application of the spectator

equation to nucleon-nucleon scattering and the deuteron bound state. Four models

are presented for the NN interaction. Each model has been fitted to the NN phase

shift data of Arndt and Roper, SP89 [30] with the aid of the error matrix obtained in

the phase shift fit. These fits are constrained such that the deuteron bound state mass

is correct. The resulting phase shift calculations are then compared to the data base

and typically obtain a χ2 per datum of approximately 2 for energies from 0 MeV to
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225 MeV of laboratory kinetic energy. This is quite good for a one-boson-exchange

model.

An unusual feature of these calculations is that some care has been taken in

allowing for meson-nucleon couplings that contain off-shell couplings which are not

usually present in such models. For example, the basic form of the πNN coupling is

chosen to be [14, 15, 16]:

gπ

[
λπγ

5 + (1− λπ)
( 6 p− 6 p′)

2m
γ5
]

(48)

where 0 ≤ λπ ≤ 1 is a parameter which extrapolates the coupling between pseu-

doscalar and pseudovector coupling. This coupling is independent of λπ when the

nucleons are on mass shell, so models with differing values of λπ differ in their off-

shell content. All meson-nucleon interactions also include factorable form factors as

in the scalar model presented above.

Two of the models from Refs. [14, 15] are used in the calculations of elastic

electron-deuteron scattering that will be presented here. These models are labelled

Model IB and Model IIB. Model IB has a kernel containing four mesons: π, σ, ω and

ρ. The pion mixing parameter λπ was adjusted as part of the fitting procedure and

has a value of λπ = 0.216. That is, there is a 22% admixture of pseudo-scalar pion

coupling. A total of ten parameters are adjusted in the fitting procedure. Model IIB

has six mesons: π, η, σ, σ1, ω and ρ. The σ1 meson is a scalar-isovector companion

to the σ with a mass comparable to the σ mass. The pion mixing parameter was

fixed at λπ = 0 for pure pseudovector coupling. A total of thirteen parameters were

adjusted in the fitting procedure.

Figure 13 shows preliminary results for the A and B structure functions as calcu-

lated for models IB and IIB using the Galster form of the dipole parameterization of

the single-nucleon electromagnetic form factors [31]. Four calculations are presented

for each case. The full calculation is the result of calculating diagrams (11a), (11b)

and (11c). Since the deuteron is an isoscalar, the only exchange currents as repre-

sented by diagram (11d) must be isoscalar and in this case are transition currents

of the type ρπγ. Such corrections are in the process of being calculated for these

models, but are not yet available. The three remaining calculations are RIA calcu-

lations. One uses the usual on-shell current operator which corresponds to setting

f0 = h0 = 1 and g0 and is labelled “RIA”. The second uses the full off-shell current

described by (40) and is labelled “RIA, off shell”. The third is the Bethe-Salpeter
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FIG. 13: A and B structure functions for models IB and IIB using the spectator
equation.
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FIG. 14: T20 for models IB and IIB using the spectator equation.

RIA of Zuilhof and Tjon [5] which corresponds to diagrams (9a) and (9b), only the

usual form of the on-shell current operator is used. Use of the off-shell single-nucleon

current causes an increase in size for all of the structure functions. The full calcu-

lations show little model dependence for A(Q2). The full calculations of A(Q2) are

still somewhat below the data at intermediate Q2 and will require some contribution

from isoscalar exchange currents, although less than previous calculations. B(Q2)

shows substantial model dependence with the position of the diffraction minimum

moved to higher Q2. Indeed, the full calculation is in remarkably good agreement

with the data. This calculation may indeed be too good in that it leaves little room

for exchange current contributions. There is, however, some controversy as to the

strength of the isoscalar exchange currents with recent calculations suggesting that

they may, indeed, be small [32]. Since models IB and IIB are largely equivalent on

mass shell, the sensitivity of B(Q2) is likely the result of the off-mass-shell differ-

ences of the two interactions. This suggests that electromagnetic processes may well

provide useful information about the off-shell behavior of strong interaction models.

Figure 14 shows T20(Q
2) for models IB and IIB. This function shows little sensi-

tivity to the various approximations or to the difference in models. All calculations
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are in reasonable agreement with the data.
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CHAPTER 5

CONCLUSIONS

This paper provides an introduction to the Bethe-Salpeter and related quasipo-

tential equations. A simple scalar model is introduced to show the features of the

solutions of these equations. This model shows that, provided the coupling is ad-

justed to reproduce the bound-state mass, the phase shifts display little variation

among a representative collection of quasipotential equations. This feature needs to

be studied in more detail for more complicated and realistic models. Care must be

taken in constructing the electromagnetic current matrix elements for these covariant

equation in order that gauge invariance not be violated.

Preliminary calculations are presented for the elastic structure functions of the

deuteron using realistic meson-nucleon models. These models provide a reasonable

description of the structure functions. In particular the calculation of B(Q2) using

model IIB is the best representation of this structure function yet obtained in the

context of such covariant models.

Considerable work remains to be done in extending these calculations to other

reactions and in the study of the relative characteristics of the various relativistic

approaches.
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APPENDIX A

THE FIRST APPENDIX

This is where I put the text of the first appendix.
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APPENDIX B

THE SECOND APPENDIX

This is where I put the text of the second appendix.
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