METABOLIC SYNDROME AND SALT-SENSITIVE HYPERTENSION IN POLYGENIC OBESE TALLYHO/JNGJ MICE: THE ROLE OF NA/K-ATPASE SIGNALING
THE SIGNIFICANCE OF INTERLEUKIN-6 AND NA/K-ATPASE SIGNALING IN OBESITY HYPERTENSION

JAZMIN CARMON
MENTOR: DR. YANLING YAN
SRIMS, MARSHALL UNIVERSITY JOAN C. EDWARDS SCHOOL OF MEDICINE
INTRODUCTION

- Obesity is recognized as a low-grade chronic inflammatory disease. Interleukin-6 contributes highly to inflammation and hypertension.

- The renal proximal tubule is responsible for about 67% of filtered Na and water absorption.

- The molecular mechanism through which sodium is transported is not fully understood.

- There have been prior advances within the lab at Marshall to understand this process.
HYPOTHESIS

• Obesity stimulates the IL-6 signal pathway and sodium pump signaling pathway.
• What is IL-6’s specific involvement?
The TallyHo and B6 mice were measured and observed based on the following:

- Body Weight
- Blood Pressure
- Blood Sugar

A high salt diet was administered to the mice when they reach the optimum age range.

Measurements of IL-6 expression, Stat3 expression, and Sodium pump signaling were analyzed from the kidney tissue of B6 and TallyHo mice.
BODY WEIGHT

C57BL/6J TALLYHO

BW B6 and TH

Note: **, P<.01 vs. B6 N= 8
NA/K-ATPASE SIGNALING WAS IMPAIRED IN TALLYHO MICE IN RESPONSE TO HIGH SALT DIET

Yanling Yan1, 3, Zi-jian Xie2, Joseph I. Shapiro1, and Jiang Liu1,2
REACTIVE OXYGEN SPECIES IN NA/K-ATPASE SIGNALING
EXPERIMENTAL MEASUREMENTS

1. Normal chow: 0.35% Sodium in food + Normal water
2. High salt: 2% NaCl in food + Normal water, 7 days
 4% NaCl in food + Normal water, 7 days
 8% NaCl in food + Normal water, 7 days

Systolic blood pressure
Body weight
24h-food consumption
24h-drining water volume
24h-urine sample

Plasma & Urine: Na⁺ and creatinine
Kidney: Na/K-ATPase signaling

TALLYHO/JngJ (Left) and C57BL/6J (Right) male mice

Sacrifice
CONCLUSION

• Impaired Na/K-ATPase signaling contributes to the increased salt sensitivity of obese hypertension and IL-6 appears to be involved in this process.
FUTURE ADVANCES

• To further explore the relationship between Na/K-ATPase and IL-6 signaling pathway will potentially lead to a new and innovative approach to improved treatment strategies for hypertension. Thus, reducing obesity-related health disparities.
ACKNOWLEDGEMENTS

• Acknowledgements to: Dr. Joseph I. Shapiro, Dr. Jiang Liu and Lab, Dr. Yanling Yan, and my parents, Barrett and Tomara Rogers. Marshall University Biomedical Sciences Graduate Program, and by NIH Grant P20GM103434 to the West Virginia IDeA Network for Biomedical Research Excellence